Anti-Müllerian Hormone and Ovarian Reserve: Update on Assessing Ovarian Function

Context
Anti-müllerian hormone (AMH) is produced by granulosa cells of small, growing follicles in the ovary. Serum AMH levels strongly correlate with the number of growing follicles, and therefore AMH has received increasing attention as a marker for ovarian reserve. This review summarizes recent findings and limitations in the application of serum AMH in ovarian reserve assessment.
Evidence Acquisition
A PubMed search was conducted to find recent literature on the measurements and use of serum AMH as a marker for ovarian reserve.
Evidence Synthesis
Serum AMH levels are measured to assess the “functional ovarian reserve,” a term that is preferred over “ovarian reserve,” since AMH levels reflect the pool of growing follicles that potentially can ovulate. Serum AMH levels are used in individualized follicle-stimulating hormone dosing protocols and may predict the risk of poor response or ovarian hyperstimulation syndrome but has limited value in predicting ongoing pregnancy. Serum AMH levels are studied to predict natural or disease-related age of menopause. Studies show that the age-dependent decline rates of AMH vary among women. The generalized implementation of serum AMH measurement has also led to an increase in diagnostic assays, including automated assays. However, direct comparison of results remains problematic.
Conclusion
Serum AMH remains the preferred ovarian reserve marker. However, the lack of an international standard for AMH limits comparison between AMH assays. Furthermore, little is known about endogenous and exogenous factors that influence serum AMH levels, which limits proper interpretation of AMH values in a clinical setting.
Introduction
Anti-müllerian hormone (AMH) is a member of the transforming growth factor beta family that has derived its name from its role during male sex differentiation by inducing the regression of the müllerian ducts. To date, AMH is best known as a serum marker for ovarian function, with assessment of AMH levels at both ends of the spectrum, that is, ovarian reserve and polycystic ovarian syndrome. In the ovary, AMH is expressed by granulosa cells of growing follicles from the primary up to the small antral stage. After follicle-stimulating hormone (FSH)-dependent selection, AMH expression disappears, although some expression remains in cumulus cells of preovulatory follicles. Also, in atretic follicles and corpora lutea, AMH expression is lost. This window of expression is largely preserved among species and in the adult human ovary. Increasing expression levels of AMH are detected in follicles up to 8 mm, and expression is absent in follicles >8 mm. This expression pattern is positively matched by AMH concentrations in follicular fluid, showing highest levels in follicles up to 8 mm and a sharp drop thereafter (Fig. 1A) (1).
Anti-müllerian hormone expression and concentration in relation to folliculogenesis and ovarian reserve. (A) Anti-müllerian hormone (AMH) expression increases from the secondary stage onward until the small antral follicle stage. In preovulatory follicles, AMH is only expressed in cumulus granulosa cells surrounding the oocyte (dark pink layer). (B) With increasing age, the functional ovarian reserve decreases as a result of exhaustion of the primordial follicle pool. This leads to a decrease in the number of small antral follicles and consequently to a decrease in serum AMH levels, reaching undetectable levels at menopause. Figure created with Biorender.
Since AMH is expressed by growing follicles prior to FSH-dependent selection and has been shown to be detectable in circulation, serum AMH has taken momentum as a marker for ovarian function, in particular in the assessment of the quantitative aspect of the ovarian reserve, which is the focus of this review. By definition, the ovarian reserve is constituted by the quality and quantity of the primordial follicles, which both decline with increasing age (2). The number of growing follicles recruited from the primordial follicle pool reflect the number of primordial follicles. Since there is no serum marker that directly can measure the number of primordial follicles, a marker that reflects the number of growing follicles is currently the best proxy for the quantitative aspect of the ovarian reserve. Initial studies, performed nearly 2 decades ago, showed that serum AMH levels indeed strongly correlate with the number of growing follicles and that both decline with increasing age (3). Based on these initial studies, serum AMH was rapidly put forward as an indirect marker for the ovarian reserve despite limited knowledge of factors that regulate ovarian AMH expression and lack of standardized AMH assays.
Since serum AMH is only an indirect marker, this has led to confusion or even misinterpretation of the term ovarian reserve. To make a clear distinction between the pool of resting primordial follicles and the pool of growing follicles, the term functional ovarian reserve (FOR) has been suggested (4). FOR constitutes the pool of follicles 2 to 5 mm in diameter from which 1 follicle is destined to be selected by FSH and to ovulate (4, 5). This pool of growing follicles is known as the AMH-producing follicles, and thus serum AMH levels directly reflect FOR (Fig. 1B). In the clinical application of serum AMH to assess the ovarian reserve, it is therefore more accurate to use the term FOR. The importance to distinguish between ovarian reserve and FOR in the interpretation of AMH levels is illustrated by mouse studies and the scarce human studies in which the number of primordial follicles were determined. In mice, AMH levels remained constant at younger ages despite declining primordial follicle numbers. Only at older ages did AMH levels reflect the number of primordial follicles, while at all ages, serum AMH levels correlated with the number of growing follicles (6). Similar findings were observed in human studies in which the density of primordial and primary follicles was directly determined in ovaries removed because of benign gynecologic indications or prior to gonadotoxic therapies. In younger women AMH levels did not correlate, while in women of late reproductive age, a significant correlation was observed with the primordial follicle density (7-10). These studies suggest that at all ages serum AMH levels reflect FOR, and only at older reproductive ages, AMH levels may also reflect the ovarian reserve. Therefore, in this review, we will use the term FOR in order to discuss recent insights and limitations in the use of serum AMH to predict age of menopause in healthy women and in disease conditions.
Published online 2020 Aug 8.