Blood Pressure And Resting Heart Rate In 3-17-year-olds In Germany In 2003–2006 And 2014–2017

To track blood pressure (BP) and resting heart rate (RHR) in children and adolescents is important due to its associations with cardiovascular outcomes in the adulthood. Therefore, the aim of this study was to examine BP and RHR over a decade among children and adolescents living in Germany using national examination data. Cross-sectional data from 3- to 17-year-old national survey participants (KiGGS 2003–06, n = 14,701; KiGGS 2014–17, n = 3509) including standardized oscillometric BP and RHR were used for age- and sex-standardized analysis. Measurement protocols were identical with the exception of the cuff selection rule, which was accounted for in the analyses. Different BP and RHR trends were observed according to age-groups. In 3- to 6-year-olds adjusted mean SBP and DBP were significantly higher in 2014–2017 compared to 2003–2006 (+2.4 and +1.9 mm Hg, respectively), while RHR was statistically significantly lower by −3.8 bpm. No significant changes in BP or in RHR were observed in 7- to 10-year-olds over time. In 11- to 13-year-olds as well as in 14- to 17-year-olds lower BP has been observed (SBP −2.4 and −3.2 mm Hg, respectively, and DBP −1.8 and −1.7 mm Hg), while RHR was significantly higher (+2.7 and +3.7 bpm). BP trends did not parallel RHR trends. The downward BP trend in adolescents seemed to follow decreasing adult BP trends in middle and high-income countries. The increase in BP in younger children needs confirmation from other studies as well as further investigation. In school-aged children and adolescents, the increased RHR trend may indicate decreased physical fitness.
Introduction
To track blood pressure (BP) and resting heart rate (RHR) in children and adolescents is important due to its associations with cardiovascular outcomes in the adulthood. BP in childhood correlates with BP in adulthood [1], hence children with elevated BP have a higher probability of developing hypertension in adulthood than children with lower BP. High compared to low RHR was related to a higher risk for all-cause mortality in a recent meta-analysis [2]. Therefore, population-based monitoring of SBP and RHR time trends is necessary. Yet, far less studies exist on SBP and RHR time trends in children compared to adults because only few countries have repeated national health examination surveys with BP and RHR measurements in children and adolescents in place [3, 4]. When analyzing BP trends in an adult population, mean SBP is considered an important indicator of BP-associated risk because it captures not only BP elevations above the fixed hypertension threshold but the whole BP distribution including moderately elevated BP. Even a BP below the hypertension threshold is still associated with increased cardiovascular risk [5]. Despite the strong association between body-mass-index (BMI) and BP [6–9], available worldwide data on mean SBP in children, which has been summarized in several reviews [10–12], showed a rather consistent decrease in mean SBP despite the obesity epidemic. However, there are some recent exceptions, i.e., fluctuating, stagnating, or increasing mean SBP in China [4, 9, 13–15] and increasing BP in selected pediatric age groups in UK [16]. The aim of this study was to examine BP and RHR over a decade among children and adolescents living in Germany using national examination data.
Study design and study population
The German Health Interview and Examination Survey for Children and Adolescents (KiGGS) is a nationwide study based on a stratified population registry sample. It is a part of the Federal Health Monitoring System operated by the Robert Koch Institute and includes repeated cross-sectional surveys (examination and interview) of children and adolescents between 0 and 17 years of age that are representative for the German population [17, 18]. In the KiGGS Baseline study (2003–06), children and adolescents aged 0–17 years were interviewed and examined (response rate 67%) and had BP and RHR measurements from age 3 years (n = 14,835) [18]. KiGGS Wave 2 was the second national health examination survey in children and adolescents aged 0–17 years in Germany in 2014–17 and had a response rate of 40.1% [17]. BP and RHR measurements were available for 3567 participants aged 3–17 years.
BP measurement methods were standardized and followed the same protocol, with the exception of cuff selection rule, in KiGGS Baseline study 2003–06 and KiGGS Wave 2 2014–17. At both time-points, BP measurements were taken in the sitting position on a height adjustable chair with a backrest, the right forearm resting on a table at the level of the heart, the elbow slightly bent, the legs uncrossed, and the feet placed firmly on the floor. Four cuff bladders (6 × 12; 9 × 18; 12 × 23, or 17 × 38.6 cm2) were available for the following arm circumferences 10.0–17.9 cm, 18.0–24.9 cm, 25.0–32.9 cm and 33.0–47.0 cm, respectively. In KiGGS Baseline an older rule for cuff selection was followed to cover at least two-thirds of the upper arm length as measured from the axilla to the antecubital fossa, while in KiGGS Wave 2 arm circumferences measures were followed for cuffs selection. As the cuff size selection based on arm length has been shown to lead to wider cuffs and therefore to lower BP than the selection based on covering at least 40% of the arm circumference [19], we have adjusted for the cuffs in the analysis. Two readings of SBP, diastolic blood pressure (DBP), mean arterial BP, and RHR were obtained, after a non-strenuous part of the examination and an additional five-minute rest in both surveys, at a two-minute interval with an automated upper armoscillometric device (DatascopeAccutorr Plus, Mahwah, NJ), which was previously validated in children aged 5–15 years according to the international protocol of the European Society of Hypertension (ESH) [20, 21]. The mean of the two SBP and DBP measurements was used for this analysis. BP in children is age, gender, and height dependent; therefore, national reference percentiles based on KiGGS data from non-overweight children were used [20]. The proportion of BP measures classified according to the international definitions as normal, elevated, and hypertensive were calculated for the KiGGS Wave 2 population according to the ESH Hypertension Definition 2016: [22] for children and adolescents <15 years old normal BP: SBP and DBP < 90th percentile; elevated BP: SBP or DBP ≥ 90th to <95th percentile and hypertensive BP: SBP or DBP ≥ 95th percentile. For adolescents 16 years and older normal BP: < 130/85 mm Hg; elevated BP: 130–139 / 85–89 mm Hg and hypertensive BP ≥ 140/90 mm Hg and according to the American Academy of Pediatrics (AAP) 2017 definition [23] for children and adolescents <13 years old normal BP: SBP and DBP < 90th percentile; elevated BP: SBP or DBP ≥ 90th to <95th percentile and hypertensive BP: SBP or DBP ≥ 95th percentile. For adolescents 13 years and older normal BP: < 120/80 mm Hg; elevated BP: 120–129 / <80 mm Hg and hypertensive BP ≥ 130/80 mm Hg.
Height was measured at both time points without shoes to the nearest 0.1 cm by using portable stadiometer devices (in KIGGS Baseline: Holtain Ltd., UK and in KIGGS Wave 2: seca 274, Fa. seca, Hamburg, Germany) and weight in underwear to the nearest 0.01 kg with a calibrated scale (seca mBCA 515/514; Fa. seca, Hamburg, Germany). A person’s BMI was calculated from the ratio between body weight and height squared (kg/m2). Up to the age of 18, BMI percentile curves were applied taking into account age and gender. In Germany, overweight and obesity are usually defined by applying national reference percentiles according to Kromeyer-Hauschild et al. [24]. Children with a BMI above the 90th percentile are considered overweight and obesity is defined as a BMI above the 97th percentile. Sensitivity analyses with the International Obesity Task Force (IOTF) [25] classification were also performed.,
Please click here to read more.
Article by,